PARIS

Multi-Agent Trajectory Prediction

Goal: Predict future locations of **all** agents in the scene

Motivation: For safe navigation of autonomous vehicles, possible future behaviors of surrounding vehicles should be known. Considering real-world requirements, the trade-off in future prediction between accuracy and efficiency should be solved. We benefit from advantages of both scene-centric and agent-centric approaches for efficient and accurate multiagent trajectory prediction

(a) Scene-Centric

(b) Agent-Centric

In scene-centric approach (a), all elements are encoded according to the same reference point. In agent-centric approach (b), each agent is encoded in its own reference frame, leading to a complexity linear in the number of agents

Approach:

- Changing reference point from the agent to the scene i.e.agent-centric to scene-centric, providing efficiency
- Using dynamic weight learning to adapt to the situation of each agent, enabling us to predict trajectories of multiple agents accurately
- Utilizing a goal-conditioned architecture to reach a unified prediction process for both single and multi-agent settings
- Stabilizing prediction with gradient stopping, achieving SOTA results using a small and fast model both in singleagent and multi-agent prediction

ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaptation

Görkay Aydemir, Adil Kaan Akan, Fatma Güney KUIS AI Center, Koç University

Methodology

Feature Encoding: Encode all items, represented in vectorized format, with transformers **Endpoint Prediction:** Predict and refine possible endpoints using adaptive head **Trajectory Prediction:** Interpolate middle steps conditioned on endpoints

Results

(a) Multi-Agent

We visualize multi-agent predictions on Interaction and single-agent on Argoverse

(b) Single-Agent

	mADE _k		mFDE _k		brier-	#Prm
	k=1	k=6	k=1	k=6	mFDE ₆	(M)
DMAS	1.67	0.94	3.59	1.44	1.897	—
neTr	1.81	0.80	4.05	1.23	1.89	15.3
	1.62	0.83	3.55	1.30	1.86	1.1
Т	1.60	0.77	3.53	1.17	1.84	2.5
ĴΑ	1.56	0.80	3.38	1.21	1.76	1.6
s (Single)	<u>1.59</u>	<u>0.79</u>	<u>3.50</u>	1.17	1.80	<u>1.4</u>

Results of single-agent prediction on Argoverse

	$mADE_6$	mFDE ₆	MR_6	Inf. (ms)
utoBot (J.)	0.21	0.64	0.06	25.29
ceneTr	0.26	0.47	<u>0.05</u>	_
HOMAS	0.26	<u>0.46</u>	<u>0.05</u>	_
Ours (Multi)	0.16	0.34	0.01	11.10

Results of multi-agent prediction on Interaction

Contact Information

Website: kuis-ai.github.io/adapt/

E-mail: {gaydemir23, kakan20, fguney}@ku.edu.tr

