

SLAMP: Stochastic Latent Appearance and Motion Prediction

Adil Kaan Akan¹, Erkut Erdem², Aykut Erdem¹, Fatma Güney¹ KUIS AI Center, Koç University, ² Hacettepe University Computer Vision Lab

Stochastic Video Prediction

Goal: Given a few frames in a video, predict next frames. Challenges:

- High dimensionality of the problem
- Uncertainty of the future
- Requires an understanding of the scene structure, motion in the scene, and object relations, etc.

Given few frames of a video, our goal is to predict future frames.

SLAMP

Steps of SLAMP Inference

- Encode past frames to create rich image features
- Sample latent variables from prior distributions
- Predict next frame's features and optical flow features by conditioning on latent variables
- Decode predicted features to next frame and optical flow for warping current frame to the next one
- Predict a mask to decide which prediction to choose
- Combine both predictions, pixel and dynamic, to generate final prediction

Detailed predictions

Methodology

Future Information

We learn two different posterior distributions, pixel and motion, from the future frames.

$$\mathbf{h}_t^p = \text{PixelEnc}(\mathbf{x}_t)$$

$$\boldsymbol{\mu}_{\boldsymbol{\phi}_p(t)}, \boldsymbol{\sigma}_{\boldsymbol{\phi}_p(t)} = \text{LSTM}_{\boldsymbol{\phi}_p}(\mathbf{h}_t^p)$$

$$\boldsymbol{\mu}_{\boldsymbol{\phi}_f(t)}, \boldsymbol{\sigma}_{\boldsymbol{\phi}_f(t)} = \text{LSTM}_{\boldsymbol{\phi}_f}(\mathbf{h}_t^f)$$

Past Information

We learn two different prior distributions, beause it is better than using fixed prior as shown in [1], pixel and motion, from the past frames.

$$\mathbf{h}_{t-1}^p = \text{PixelEnc}(\mathbf{x}_{t-1})$$

$$\boldsymbol{\mu}_{\boldsymbol{\psi}_p(t-1)}, \boldsymbol{\sigma}_{\boldsymbol{\psi}_p(t-1)} = \text{LSTM}_{\boldsymbol{\psi}_p}(\mathbf{h}_{t-1}^p)$$

$$\boldsymbol{\mu}_{\boldsymbol{\psi}_p(t-1)}, \boldsymbol{\sigma}_{\boldsymbol{\psi}_p(t-1)} = \text{LSTM}_{\boldsymbol{\psi}_p}(\mathbf{h}_{t-1}^f)$$

$$\boldsymbol{\mu}_{\boldsymbol{\psi}_f(t)}, \boldsymbol{\sigma}_{\boldsymbol{\psi}_f(t)} = \text{LSTM}_{\boldsymbol{\psi}_f}(\mathbf{h}_{t-1}^f)$$

Frame prediction

We predict pixel and motion in high-leval feature space.

$$\mathbf{g}_t^p = \mathrm{LSTM}_{oldsymbol{ heta}_p}(\mathbf{h}_{t-1}^p, \mathbf{z}_t^p)$$

Decoding

We decode predicted features and combine them with a predicted mask.

$$\mu_{\boldsymbol{\theta}_p} = \text{PixelDec}(\mathbf{g}_t^p)$$

$$\mathbf{x}_t^p = \mu_{\boldsymbol{\theta}_p}$$

$$\hat{\mathbf{x}}_t = \mathbf{m}(\mathbf{x}_t^p, \mathbf{x}_t^f) \odot \mathbf{x}_t^p + (\mathbf{1} - \mathbf{m}(\mathbf{x}_t^p, \mathbf{x}_t^f)) \odot \mathbf{x}_t^f$$

$$\hat{\mathbf{x}}_t = \mathbf{m}(\mathbf{x}_t^p, \mathbf{x}_t^f) \odot \mathbf{x}_t^p + (\mathbf{1} - \mathbf{m}(\mathbf{x}_t^p, \mathbf{x}_t^f)) \odot \mathbf{x}_t^f$$

Evidence Lower Bound (ELBO)

We maximize the following Evidence Lower Bound to optimize our model.

$$\log p_{\boldsymbol{\theta}}(\mathbf{x}) \ge \mathcal{L}_{\boldsymbol{\theta}, \boldsymbol{\phi}_p, \boldsymbol{\phi}_f, \boldsymbol{\psi}_p, \boldsymbol{\psi}_f}(\mathbf{x}_{1:T}) = \sum_{t} E_{\mathbf{z}_{1:t}^p \sim q_{\boldsymbol{\phi}_p}} \log p_{\boldsymbol{\theta}}(\mathbf{x}_t | \mathbf{x}_{1:t-1}, \mathbf{z}_{1:t}^p, \mathbf{z}_{1:t}^f) - \beta \left[q(\mathbf{z}_t^p | \mathbf{x}_{1:t}) p(\mathbf{z}_t^p | \mathbf{x}_{1:t-1}) + q(\mathbf{z}_t^f | \mathbf{x}_{1:t}) p(\mathbf{z}_t^f | \mathbf{x}_{1:t-1}) \right]$$

Qualitative Results

Comparisons with baseline and state-of-the-art methods on Cityscapes.

Diversity Experiments

Quantitative Results

	(' /	SSIM (†)	
SV2P [2]	28.19 ± 0.31	0.8141 ± 0.0050	0.2049 ± 0.0053 0.1120 ± 0.0039
SAVP [3]	26.51 ± 0.29	0.7564 ± 0.0062	0.1120 ± 0.0039
് SVG [1]	28.06 ± 0.29	0.8438 ± 0.0054	0.0923 ± 0.0038
SRVP [4]	$\textbf{29.69}\pm\textbf{0.32}$	0.8697 ± 0.0046	0.0736 ± 0.0029
SLAMP	29.39 ± 0.30	0.8646 ± 0.0050	0.0795 ± 0.0034
~ SV2P [2]	$\textbf{20.39}\pm\textbf{0.27}$	0.8169 ± 0.0086	0.0912 ± 0.0053
SAVP [3]	18.44 ± 0.25	0.7887 ± 0.0092	0.0912 ± 0.0053 0.0634 ± 0.0026
SVG [1]	18.95 ± 0.26	0.8058 ± 0.0088	0.0609 ± 0.0034
SRVP [4]	19.59 ± 0.27	0.8196 ± 0.0084	0.0574 ± 0.0032
SLAMP	19.67 ± 0.26	0.8161 ± 0.0086	0.0639 ± 0.0037

Results on generic video prediction datasets

Our model performs comparable to state-of-the-art, SRVP [4], on simple datasets, Moving MNIST, KTH, BAIR. However, it outperforms state-of-the-art SRVP on real-world datasets, KITTI and Cityscapes with challenging background motion.

	PSNR (†)			
二 SVG [1]	12.70 ± 0.70	0.329 ± 0.030	$\frac{0.594}{0.635} \pm 0.034$	
SRVP [4]	13.41 ± 0.42	0.336 ± 0.034	0.635 ± 0.021	
SLAMP	13.46 ± 0.74	0.337 ± 0.034	$\textbf{0.537}\pm\textbf{0.042}$	
SVG [1]	20.42 ± 0.63	0.606 ± 0.023	0.340 ± 0.022	
SRVP [4]	20.97 ± 0.43	0.603 ± 0.016	$\frac{0.340 \pm 0.022}{0.447 \pm 0.014}$	
SLAMP	21.73 ± 0.76	0.649 ± 0.025	0.2941 ± 0.022	
Results on Real-world datasets with moving background				

Concluding Remarks

- Explicit motion modelling via optical flow
- Implicit learning of moving parts of the scene via mask
- Comparable results on generic video prediction datasets
- State-of-the-art results on challenging real-world datasets with moving background

References

- [1] E. Denton and R. Fergus, "Stochastic video generation with a learned prior," 2018
- [2] M. Babaeizadeh, C. Finn, D. Erhan, R. H. Campbell, and S. Levine, "Stochastic variational video prediction," 2018.
- [3] A. X. Lee, R. Zhang, F. Ebert, P. Abbeel, C. Finn, and S. Levine, "Stochastic adversarial video prediction," 2018.
- [4] J.-Y. Franceschi, E. Delasalles, M. Chen, S. Lamprier, and P. Gallinari, "Stochastic latent residual video prediction," 2020.

Contact Information

Our results are seen best in video, please check our website: https://kuis-ai.github.io/slamp.

[Email] {kakan20, aerdem, fguney}@ku.edu.tr, erkut@cs.hacettepe.edu.tr