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Stochastic Video Prediction

Goal: Given a few frames in a video, predict next frames.
Challenges:

•High dimensionality of the problem
•Uncertainty of the future
•Requires an understanding of the scene structure, motion in
the scene, and object relations, etc.
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Given few frames of a video, our goal is to predict future frames.
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Steps of SLAMP Inference
•Encode past frames to create rich image features
•Sample latent variables from prior distributions
•Predict next frame’s features and optical flow features by con-
ditioning on latent variables
•Decode predicted features to next frame and optical flow for
warping current frame to the next one
•Predict a mask to decide which prediction to choose
•Combine both predictions, pixel and dynamic, to generate final
prediction
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Model block

Pixel
Encoder

Motion
Encoder

Motion
Encoder

Pixel 
Decoder

Flow
Decoder

 

Pixel
Encoder

Pixel
Encoder

Motion
Encoder  

Mask Decoder

SLAMP has three different decoders, pixel, flow and mask. It decodes two candidate images from pixel and flow decoders and combine them
via predicted mask. It also has two separate prior and posterior distributions, one models pixel space and the other models motion history.

Methodology

Future Information
We learn two different posterior distributions, pixel and motion, from the future frames.

hp
t = PixelEnc(xt)

µφp(t),σφp(t) = LSTMφp(h
p
t )

hf
t = MotionEnc(xt−1,xt)

µφf(t),σφf(t) = LSTMφf(h
f
t )

Past Information
We learn two different prior distributions, beause it is better than using fixed prior as shown in [1], pixel and motion, from the past frames.

hp
t−1 = PixelEnc(xt−1)

µψp(t−1),σψp(t−1) = LSTMψp
(hp

t−1)
hf
t−1 = MotionEnc(xt−2,xt−1)

µψf(t),σψf(t) = LSTMψf
(hf

t−1)
Frame prediction
We predict pixel and motion in high-leval feature space.

gpt = LSTMθp(h
p
t−1, zpt ) gft = LSTMθf(h

f
t−1, zft )

Decoding
We decode predicted features and combine them with a predicted mask.

µθp = PixelDec(gpt )
xpt = µθp

µθf = FlowDec(gft )
xft =Warp(xt−1,µθf)

x̂t = m(xpt ,xft )� xpt + (1−m(xpt ,xft ))� xft

Evidence Lower Bound (ELBO)
We maximize the following Evidence Lower Bound to optimize our model.

log pθ(x) ≥ Lθ,φp,φf ,ψp,ψf
(x1:T ) = ∑

t
Ezp1:t∼qφp

zf1:t∼qφf

log pθ(xt|x1:t−1, zp1:t, zf1:t)− β
q(zpt |x1:t)p(zpt |x1:t−1) + q(zft |x1:t)p(zft |x1:t−1)



Qualitative Results
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Comparisons with baseline and state-of-the-art methods on Cityscapes.
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Diversity Experiments

Quantitative Results
Models PSNR (↑) SSIM (↑) LPIPS (↓)

K
T

H SV2P [2] 28.19 ± 0.31 0.8141 ± 0.0050 0.2049 ± 0.0053
SAVP [3] 26.51 ± 0.29 0.7564 ± 0.0062 0.1120 ± 0.0039
SVG [1] 28.06 ± 0.29 0.8438 ± 0.0054 0.0923 ± 0.0038
SRVP [4] 29.69 ± 0.32 0.8697 ± 0.0046 0.0736 ± 0.0029
SLAMP 29.39 ± 0.30 0.8646 ± 0.0050 0.0795 ± 0.0034

B
A

IR

SV2P [2] 20.39 ± 0.27 0.8169 ± 0.0086 0.0912 ± 0.0053
SAVP [3] 18.44 ± 0.25 0.7887 ± 0.0092 0.0634 ± 0.0026
SVG [1] 18.95 ± 0.26 0.8058 ± 0.0088 0.0609 ± 0.0034
SRVP [4] 19.59 ± 0.27 0.8196 ± 0.0084 0.0574 ± 0.0032
SLAMP 19.67 ± 0.26 0.8161 ± 0.0086 0.0639 ± 0.0037

Results on generic video prediction datasets

Our model performs comparable to state-of-the-art, SRVP [4], on sim-
ple datasets, Moving MNIST, KTH, BAIR. However, it outperforms
state-of-the-art SRVP on real-world datasets, KITTI and Cityscapes
with challenging background motion.

Models PSNR (↑) SSIM (↑) LPIPS (↓)

K
IT

T
I SVG [1] 12.70 ± 0.70 0.329 ± 0.030 0.594 ± 0.034

SRVP [4] 13.41 ± 0.42 0.336 ± 0.034 0.635 ± 0.021
SLAMP 13.46 ± 0.74 0.337 ± 0.034 0.537 ± 0.042

C
IT

Y SVG [1] 20.42 ± 0.63 0.606 ± 0.023 0.340 ± 0.022
SRVP [4] 20.97 ± 0.43 0.603 ± 0.016 0.447 ± 0.014
SLAMP 21.73 ± 0.76 0.649 ± 0.025 0.2941 ± 0.022

Results on Real-world datasets with moving background

Concluding Remarks

•Explicit motion modelling via optical flow
• Implicit learning of moving parts of the scene via mask
•Comparable results on generic video prediction datasets
•State-of-the-art results on challenging real-world datasets with mov-
ing background
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Contact Information
Our results are seen best in video, please check our website:
https://kuis-ai.github.io/slamp.
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