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Abstract. In this part, we provide additional illustrations, derivations,
and results for our paper “StretchBEV: Stretching Future Instance Pre-
diction Spatially and Temporally”. We first show the full derivation of the
Evidence Lower Bound (ELBO) in Section A. In Section B, we explain
the architectural choices and training details. We present the detailed
versions of the quantitative results in the main paper. In addition, we
present more ablation experiments with the content variable and perform
a comparison in terms of inference speed. We provide more qualitative
results comparing our method to ground truth and FIERY [4], and also
visualizations of samples for diversity. Video visualizations are available
at our website.

A Evidence Lower Bound

In this section, we derive the variational lower bound for the proposed model
following [2]. The changes in our derivation are mainly due to excluding the
content variable and including the output modalities in the derivations.

Using the original variational lower bound of variational autoencoders [6] in
(1):

log p(s1:T ,o1:T )

≥ E(z̃2:T ,ỹ1:T )∼qZ,Y
log p(s1:T ,o1:T |z̃2:T , ỹ1:T )−DKL(qZ,Y || p(y1:T , z2:T ))

(1)

= E(z̃2:T ,ỹ1:T )∼qZ,Y
log p (s1:T ,o1:T |z̃2:T , ỹ1:T ) (2)

−DKL(q (y1, z2:T |s1:T ,o1:T ) || p(y1:T , z2:T ))

= E(z̃2:T ,ỹ1:T )∼qZ,Y

T∑
t=1

log p(st|ỹt) + log p(ot|st) (3)

−DKL(q(y1, z2:T |s1:T ,o1:T ) || p(y1:T , z2:T ))

where:

– (2) is given by the forward and inference models factorizing p and q in
Equations (3,4,5) in the main paper.
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– The y2:T variables are deterministic functions of y1 and z2:T with respect
to p and q;

– (3) results from the factorization of p(s1:T |y1:T , z1:T ) in Equation (3) in the
main paper.

– log p(ot|st) is also deterministic and corresponds to supervised decoding of
output modalities (Sec 3.4 in the main paper).

From there, by using the integral formulation of DKL:

log p(s1:T ,o1:T )

≥ E(z̃2:T ,ỹ1:T )∼qZ,Y

T∑
t=1

log p(st,ot|ỹt)

+

∫
· · ·

∫
y1,z2:T

q(y1, z2:T |s1:T ,o1:T )log
p(y1, z2:T )

q(y1, z2:T |s1:T ,o1:T )
dz2:Tdy1

(4)

= E(z̃2:T ,ỹ1:T )∼qZ,Y

T∑
t=1

log p(st|ỹt) + log p(ot|st)−DKL(q(y1|s1:T ) || p(y1))

+ Eỹ1∼q(y1|s1:T )

[ ∫
· · ·

∫
z2:T

q(z2:T |s1:T ,o1:T , ỹ1)log
p(z2:T |ỹ1)

q(z2:T |s1:T ,o1:T , ỹ1)
dz2:T

]
(5)

= E(z̃2:T ,ỹ1:T )∼qZ,Y

T∑
t=1

log p(st|ỹt) + log p(ot|st)−DKL(q(y1|s1:k) || p(y1))

+ Eỹ1∼q(y1|s1:k)

[ ∫
· · ·

∫
z2:T

q(z2:T |s1:T ,o1:T , ỹ1)log
p(z2:T |ỹ1)

q(z2:T |s1:T ,o1:T , ỹ1)
dz2:T

]
(6)

= E(z̃2:T ,ỹ1:T )∼qZ,Y

T∑
t=1

log p(st|ỹt) + log p(ot|st)−DKL(q(y1|s1:k) || p(y1))

+ Eỹ1∼q(y1|s1:k)

[ ∫
· · ·

∫
z2:T

T∏
t=2

q(zt|s1:t,o1:t)

T∑
t=2

log
p(zt|ỹ1, z2:t−1)

q(zt|s1:t,o1:t)
dz2:T

] (7)

= E(z̃2:T ,ỹ1:T )∼qZ,Y

T∑
t=1

log p(st|ỹt) + log p(ot|st)−DKL(q(y1|s1:k) || p(y1))

− Eỹ1∼q(y1|s1:k)DKL(q(z2|s1:t,o1:t) || p(z2|ỹ1))

+ Eỹ1∼q(y1|s1:k)Ez̃2∼q(z2|s1:2,o1:2)[ ∫
· · ·

∫
z3:T

T∏
t=3

q(zt|s1:t,o1:t)

T∑
t=3

log
p(zt|ỹ1, z2:t−1)

q(zt|s1:t,o1:t)
dz3:T

] (8)

where:
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– (6) follows from the inference model of Equation (5) in the main paper,
where y1 only depends on s1:k;

– (7) is obtained from the factorizations of Equations (3,4,5) in the main paper.

By iterating (8)’s step on z3, . . . , zT and factorizing all expectations, we obtain:

log p(s1:T ,o1:T ) (9)

≥ E(z̃2:T ,ỹ1:T )∼qZ,Y

T∑
t=1

log p(st|ỹt) + log p(ot|st)−DKL(q(y1|s1:k) || p(y1))

− Eỹ1∼q(y1|s1:k)

(
Ez̃t∼q(zt|s1:t,o1:t)

)T

t=2

T∑
t=2

DKL(q(zt|s1:t,o1:t) || p(zt|ỹ1, z̃1:t−1))

and we finally retrieve Evidence Lower Bound in (6) in the main paper by using
the factorization in (5) in the main paper:

log p(s1:T ,o1:T ) (10)

≥ E(z̃2:T ,ỹ1:T )∼qZ,Y

T∑
t=1

log p(st|ỹt) + log p(ot|st)−DKL(q(y1|s1:k) || p(y1))

− E(z̃2:T ,ỹ1:T )∼qZ,Y

T∑
t=2

DKL(q(zt|s1:t,o1:t) || p(zt|ỹt−1))

B Model and Training Details

In this section, we provide the details of the architectures used (Section B.1),
and the details of the training including the hyper-parameters used in the opti-
mization (Section B.2).

B.1 Model Details

Our models use the same framework as FIERY [4] following the same input-
output setting to be comparable. Both models process n = 6 camera images at
(Hin,Win) = (224×480) for k conditioning time steps, i.e. k = 3, which results in
18 images in total. The minimum depth value we consider is Dmin = 2.0m, which
corresponds to the spatial extent of the ego-car. The maximum depth value is
Dmax = 50.0m, and the size of each depth slice is set to Dsize = 1.0m. Our model
uses the same bird’s-eye view (BEV) encoder and future instance segmentation
and motion decoder as FIERY [4]. For further details, we direct reviewers into
their appendix section. Next, we explain the details of each block in our model
and for the missing or unclear parts, the code is attached with the submission.
We will also share the code and the trained models upon publication.

Dow-sampling Encoder and Up-sampling Decoder: Our model uses an-
other encoder-decoder pair to reduce spatial size of feature extracted by the
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BEV encoder. Down-sampling encoder contains 10 convolutional layers followed
by batch normalization and Leaky ReLU activation. After 2 convolutional lay-
ers, we apply a dropout with probability of 0.25. At the end, we apply another
convolutional layer with a batch normalization but with tanh activation at the
end. Down-sampling encoder uses max-pooling after the second and fourth con-
volutions to reduce the spatial size to 1/4th resolution. Up-sampling decoder
is the symmetric version of the down-sampling decoder. We use the “nearest”
mode up-sampling instead of the max-pooling to increase the spatial size.

The First Latent State: We encode the conditioning frames with a small CNN
to learn the first latent state y1. The network contains 4 convolutions followed
by batch normalization and Leaky ReLU activation. We also add a Squeeze and
Excitation layer after the second and the fourth convolution to enhance the
learned features. At the end, we apply a convolutional layer which outputs µy

ϕ

and σy
ϕ, and then we use them to sample the first state, y1.

Prior Distribution: We use another CNN to learn a prior distribution from
the previous latent state yt−1. The network is the same as the first latent state
network except for the input, we feed the previous latent variable, yt−1 at time
t and it produces µθ and σθ.

Posterior Distribution: For posterior distribution, we use recurrent neural
network, GRU-Conv, which is a combination of SpatialGRUs and convolutions.
Our goal is to learn a posterior distribution, µz

ϕ and σz
ϕ, representing the tem-

poral dynamics. We first process image features extracted by the BEV encoder
with our GRU-Conv network. Then, for each time step, we use the same network
as the prior distribution to sample a posterior distribution. GRU-Conv contains
2 SpatialGRUs followed by 2 convolutional blocks, each of which contains 2
convolutions with 1× 1 and 3× 3 kernel sizes.

Dynamics Update: We use a network to update intermediate latent variables
yt. We feed the previous latent variable yt−1 and the corresponding stochastic
variable zt at time t, and the output of the network is added to the previous latent
variable, yt−1. The architecture is the same as the prior distribution architecture
except that it only inputs one set of parameters at the end instead of two.

B.2 Training Details

We train our models with 2 V100 GPUs for 25 epochs at most. We will release
all the scripts used for training and the checkpoints of the models used for
evaluation.

Pre-training: Our models can be pre-trained to learn the dynamics update in
an unsupervised manner. We simply initialize the BEV encoder from a check-
point trained to segment the present time objects in bird’s-eye view [7]. More-
over, we remove the future instance segmentation and the motion decoder. In
this setting, our dynamics model learns to predict the BEV features of future
time steps that are extracted by the BEV encoder conditioned on the features
of the previous time steps. This way, our model learns to predict the future in
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the feature space without ground truth segmentation or motion. According to
our results, the pre-training improves the results significantly for StretchBEV.
We cannot do unsupervised pre-training for StretchBEV-P because it needs the
ground truth labels in the posterior distribution.

Training Parameters: We train all our models for 25 epochs at most. We
use a held-out validation set for model selection. We use the maximum batch
size that fits into V100 GPUs, which is 2 for training and 12 for pre-training.
We use 3× 10−4 as a starting learning rate. We apply learning rate decay if the
validation loss does not decrease for some threshold, which is the reason for a
varying number of epochs depending on the model.

C Detailed Quantitative Results

In this section, we provide extended versions of the tables in the main paper.

In Table 2, we provide our ablation table by also adding the results with
the content variable. As explained in the main paper, content variable does not
improve the performance of our models in contrast to the state of the art video
prediction [2], therefore omitted in our formulation.

In Table ??, we provide the results of the future segmentation performances
in the FISHING setting as proposed in [3]. Differently from the main paper,
this table includes the result of StretchBEV as well. Both StretchBEV and
StretchBEV-P outperform FIERY [4] in this setting.

In Table 3, we provide the quantitative results of Fig. 3 in the main paper,
which shows the performance comparison over different temporal horizons. As
can be seen from the table, our models StretchBEV and StretchBEV-P outper-
form FIERY [4] in far regions, especially StretchBEV-P by a large margin in
terms of VPQ. The performance of StretchBEV is impressive in near IoU in
longer settings.

In Table ??, we provide Generalized Energy Distance (GED) for both of
our models StretchBEV and StretchBEV-P compared to FIERY [4]. As can be
seen from the table, both our models are more diverse than FIERY in terms
of GED. This shows the significance of modelling future uncertainty with time-
independent stochastic latent variables.

Run-time and Parameter Comparison: We compare the inference speed of
our model StretchBEV-P and FIERY [4] by measuring the average time needed
to process a validation example in inference over 250 forward passes. Both mod-
els have almost the same inference speed (FIERY: 0.6436 seconds/example vs.
StretchBEV-P: 0.6469 seconds/example). Although our model processes each
time step separately, it does not introduce any drawbacks in terms of speed and
its inference speed is almost the same as FIERY.

FIERY [5] has 8.1M parameters whereas StretchBEV-P has 16.2M. However,
the runtime performances are still the same (0.64 sec per sample) thanks to the
separation of generation from the learning of dynamics in our model.
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D Additional Visualizations and Qualitative Results

D.1 Qualitative Comparisons

In this subsection, we provide additional qualitative comparisons with FIERY [4]
by also visualizing the ground truth. As it can be seen from the Figures 1, 2, 3,
both models sometimes cannot capture the real trajectory, however, they have
the notion of the objects and the motion in the scene. Most of the time, our
model detects and segments the objects more correctly. Moreover, the trajecto-
ries generated by our model are more realistic and closer to the ground truth.

D.2 Measuring the Uncertainty Qualitatively

In Figures 4, 5, 6, we visualize three samples from FIERY and three samples from
our model StretchBEV-P for the same scene in a row. When the scene is dynamic
with moving vehicles, our model can generate more diverse samples by changing
the speed of the vehicles. The samples generated by our model do not differ
when the scene contains static objects which do not move. NuScenes dataset [1]
contains a lot of vehicles that are parked and do not move throughout the scene.
Therefore, our model does not learn to change the position of a static vehicle.
In longer sequences, not only prediction but also tracking becomes harder, for
example due to ID switches as can be seen in one of the samples (Fig. 6, row 5)
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Pre- Posterior Content IoU (↑) VPQ (↑)
training w/labels Near Far Near Far

StretchBEV
—

—
— 53.3 35.8 41.7 26.0

— ✓ 51.9 34.1 40.8 25
✓ — 55.5 37.1 46.0 29.0

FIERY [4]
— ✓ —

59.4 36.7 50.2 29.4
Reproduced 58.8 35.8 50.5 29.0

StretchBEV-P — ✓ — 58.1 52.5 53.0 47.5
StretchBEV-P — ✓ ✓ 57.6 51.9 51.5 46.8

Table 2: Ablation Study. Different than the table that we provide in the main
paper, this table includes results with Content variable. As we stated before,
content variable does not improve the results because most of the details are
suppressed in the BEV representation.

Short Mid Long

IoU (↑) VPQ (↑) IoU (↑) VPQ (↑) IoU (↑) VPQ (↑)

Near Far Near Far Near Far Near Far Near Far Near Far

StretchBEV 55.5 37.1 46.0 29.0 47.7 32.5 39.1 23.8 43.7 28.4 36.4 21.0

FIERY [4] 58.8 35.8 50.5 29.0 47.4 30.1 40.6 23.6 41.8 26.7 36.6 20.9
StretchBEV-P 58.1 52.5 53.0 47.5 46.8 32.7 43.7 38.4 38.2 31.8 37.4 30.8

Table 3: Evaluation over Different Temporal Horizons. This table extends
Figure 3 in the main paper with the results of our models in comparison to
FIERY [4] over short (2.0s), mid (4.0s), and long (6.0s) temporal horizons.
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FRONT LEFT FRONT
Input Images

FRONT RIGHT

BACK LEFT BACK BACK RIGHT

Ground Truth FIERY StretchBEV-P

Fig. 1: Qualitative Comparison for 2 seconds into future. In this figure,
we qualitatively compare the results of our model StretchBEV-P (right) to the
ground truth (left) and FIERY [4] (middle) over short temporal horizon, which
corresponds to predicting 2.0 seconds into the future. Each color represents an
instance of a vehicle with its trajectory trailing in the same color transparently.
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FRONT LEFT FRONT
Input Images

FRONT RIGHT

BACK LEFT BACK BACK RIGHT

Ground Truth FIERY StretchBEV-P

Fig. 2: Qualitative Comparison for 4 seconds into future. In this figure,
we qualitatively compare the results of our model StretchBEV-P (right) to the
ground truth (left) and FIERY [4] (middle) over mid temporal horizon, which
corresponds to predicting 4.0 seconds into the future. Each color represents an
instance of a vehicle with its trajectory trailing in the same color transparently.
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FRONT LEFT FRONT
Input Images

FRONT RIGHT

BACK LEFT BACK BACK RIGHT

Ground Truth FIERY StretchBEV-P

Fig. 3: Qualitative Comparison for 6 seconds into future. In this figure,
we qualitatively compare the results of our model StretchBEV-P (right) to the
ground truth (left) and FIERY [4] (middle) over long temporal horizon, which
corresponds to predicting 6.0 seconds into the future. Each color represents an
instance of a vehicle with its trajectory trailing in the same color transparently.
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FIERY StretchBEV-P

Fig. 4: Qualitative Comparison of Diversity for 2.0 seconds into future.
In this figure, we visualize random samples from FIERY [4] (left) and our model
StretchBEV-P (right) over short temporal horizon, which corresponds to pre-
dicting 2.0 seconds into future.
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FIERY StretchBEV-P

Fig. 5: Qualitative Comparison of Diversity for 4.0 seconds into future.
In this figure, we visualize random samples from FIERY [4] (left) and our model
StretchBEV-P (right) over mid temporal horizon, which corresponds to predict-
ing 4.0 seconds into future.
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FIERY StretchBEV-P

Fig. 6: Qualitative Comparison of Diversity for 6.0 seconds into future.
In this figure, we visualize random samples from FIERY [4] (left) and our model
StretchBEV-P (right) over long temporal horizon, which corresponds to pre-
dicting 6.0 seconds into future.
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